Example: Input Impedance

Consider the following circuit:

If we ignored our new μ-wave knowledge, we might erroneously conclude that the input impedance of this circuit is:

Therefore:

$$
Z_{i n}=\frac{-j 3(2+1+j 2)}{-j 3+2+1+j^{2}}=\frac{6-j 9}{3-j}=2.7-j 2.1
$$

Of course, this is not the correct answer!
We must use our transmission line theory to determine an accurate value.

Define Z_{1} as the input impedance of the last section:

we find that Z_{1} is:

$$
\begin{aligned}
Z_{1} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =2\left(\frac{(1+j 2) \cos (\pi / 4)+j 2 \sin (\pi / 4)}{2 \cos (\pi / 4)+j(1+j 2) \sin (\pi / 4)}\right) \\
& =2\left(\frac{1+j 4}{j}\right) \\
& =8-j 2
\end{aligned}
$$

Therefore, our circuit now becomes:

Note the resistor is in series with impedance Z_{1}. We can combine these two into one impedance defined as Z_{2} :

$$
Z_{2}=2+Z_{1}=2+(8-j 2)=10-j 2
$$

Now let's define the input impedance of the middle transmission line section as Z_{3} :

Note that this transmission line is a quarter wavelength $(\ell=1 / 4)$. This is one of the special cases we considered earlier! The input impedance Z_{3} is:

$$
\begin{aligned}
Z_{3} & =\frac{Z_{0}^{2}}{Z_{L}} \\
& =\frac{Z_{0}^{2}}{Z_{2}} \\
& =\frac{1.5^{2}}{10-j 2} \\
& =0.21+j 0.043
\end{aligned}
$$

Thus, we can further simplify the original circuit as:

Now we find that the impedance Z_{3} is parallel to the capacitor. We can combine the two impedances and define the result as impedance Z_{4} :

$$
\begin{aligned}
Z_{4} & =-j 3 \|(0.21+j 0.043) \\
& =\frac{-j 3(0.21+j 0.043)}{-j 3+0.21+j 0.043} \\
& =0.22+j 0.028
\end{aligned}
$$

Now we are left with this equivalent circuit:

Note that the remaining transmission line section is a half wavelength! This is one of the special situations we discussed in a previous handout. Recall that the input impedance in this case is simply equal to the load impedance:

$$
Z_{\text {in }}=Z_{L}=Z_{4}=0.22+j 0.028
$$

Whew! We are finally done. The input impedance of the original circuit is:

Note this means that this circuit:

and this circuit:

are precisely the same(at frequency ω_{0})!

They have exactly the same impedance, and thus they "behave" precisely the same way in any circuit (but only at frequency $\omega_{0}!$).

